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Received 1 March 1977 

Abstract. The concept of the helicity modulus, Yd(T), introduced by Fisher, Barber and 
Jasnow, is applied to the ideal Bose gas in d dimensions. Above the critical temperature 
Tc,d, Y is found to vanish identically, while for T <  Tc,d. 

yd (T) = (h2p/m )[ 1 - (T/ Tc,d ) ’ 1 7  

where p is the total density. The relevance of these results to more general theories of 
superfluidity is discussed. 

1. Introduction 

The concept of the helicity modulus was introduced by Fisher, Barber and Jasnow 
(1973, to be referred to as FBJ), who discussed its role in the critical behaviour of 
isotropic systems with n-component order parameters (n 3 2). Fundamentally, the 
helicity modulus Y(T) is a measure of the response of the system to a helical or 
‘phase-twisting’ field. In this context, Y can be used to define a phase-coherence length 
I I ‘~’(T), which has similar properties to a correlation length. In particular, A(y)(T) 
diverges at the critical point. Since conventional definitions of a correlation length fail 
in the ordered phase of an isotropic system, this concept appears to have some utility 
(see FBJ 00 3-5). 

Alternatively, one can consider the helicity modulus to be the analogy, for an 
isotropic system, of the surface tension or interfacial free energy between two phases in 
a system with a scalar (n = 1) order parameter, e.g. an Ising model. This viewpoint 
yields the explicit definition (FBJ 0 2) 

lim ([2L(R)/.rr2A(S2)][@”*’(T; i2)-@”(T; a)]}, Y(T) = A(n),L(n)+co 

where @“(T; Cl) is the total free energy of the system in a domain Cl of cross-sectional 
area A (a) and length L (a), with respectively periodic (T = 0) and anti-periodic (T = $) 
boundary conditions applied across the length L(Q). This definition was used by Barber 
and Fisher (1973a) to calculate Y(T) for the spherical model (Berlin and Kac 1952) on a 
hypercubic lattice. As was first argued by Stanley (1968), this model corresponds to 
an n-component spin system in the limit n -+ a. 

The helicity modulus may also be defined for a continuum system. In particular, for 
a Bose fluid Y(T) is simply related to the superfluid density p, (T )  through (FBJ equation 
(2.10)): 

p m  = (”Y(T), (1.2) 
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where m is the mass of a single particle and ZZ is Planck’s constant divided by 27r. Thus 
the helicity modulus affords an equilibrium definition of p,(T). 

In this paper, we apply the definition (1.1) to calculate Y and hence p s  for an ideal 
d-dimensional Bose fluid ( d a 3 ) .  This calculation is most easily carried out for a 
d-dimensional Euclidean domain which is of infinite extent in d’(=d-1) dimensions 
(d ’a  2) but of a finite thickness L in the dth dimension. We shall refer to this geometry 
as a ‘film’. In terms of f;(T, p ; L),  the free energy per unit volume, where as before 7 
denotes the boundary conditions applied across the length L, (1.1) reduces to 

Note that we explicitly indicate that the free energy densities are functions of the 
particle density p = N/V(fl), and both free energies are to be computed at the same 
density. This point is important, since the ideal Bose gas is usually and most easily 
discussed in the grand canonical ensemble (see e.g. London 1954) with p replaced by its 
conjugate variable, the chemical potential p. 

Equation (1.3) forms the basis of our calculation, which is arranged as follows. In 
Q 2, we summarise the relevant results of an earlier analysis (Barber 1973) of the free 
energies of ideal Bose fluids in partially finite geometries. The helicity modulus is 
extracted from these results in 0 3 and a concluding discussion given in 0 4. The final 
expressions for Y d ( T )  have been reported elsewhere (FBJ 0 2) but the details of the 
analysis have not been presented before. 

2. Free energies of ideal Bose gases in partially finite geometries 

The thermodynamic properties of an ideal Bose fluid in a domain fl of volume V, are 
most easily derived from the grand potential (London 1954, Gunton and Buckingham 
1968) 

Pp(p ,  T> = -vi1 2 ln{l -exp[-P(Ek -p)1}9 (2.1) 
k 

where p = (kBT)-’, and Ek is the energy of the single-particle state k. The chemical 
potential p is determined as a function of temperature and density p by the density 
constraint 

p = (Waph-. (2.2) 
Equation (2.1) has been specialised to the film geometry of interest here by Barber 
(1973). To summarise these results it is convenient to define a dimensionless length 

I =L/AJr  (2.3) 

and reduced chemical potential 

rp = -P(p - € @ > O  T>T,  

f$ = -P(p -€;) = 0 T S T,, 
where the thermal de Broglie wavelength is 

A =  (27rh2/mk~T)1/2. 
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The basic expression for p b ,  T) for a d’-dimensional film of thickness L and infinite 
lateral extent can then be written (Barber 1973) 

A ~ P P  = P X ~ ,  I )  = ( T - ” ~ / o  F$(d+l)[d +‘i(r2- rL)/121 (2.6) 
?€% 

where the so called Bose functions (Erdtlyi 1953, London 1954) are defined by 
m 

F,(z) = m-, exp(-mz). 
m-1 

The sum in (2.6) is over the subsets of integers: 

s o = ( O ,  *2, *4 , .  . .,*a) 
s1,2= (*l, *3, *5, . . . , *a) 

(7 = 0) 

(7 = f) 

(2.7) 

with ro,+ = min(lr1, r E ST}. 
The density constraint (2.2) follows by differentiation and can be written as 

Adp =%-2(4,1), (2.9) 

F;(z)=dF,(z)/dz =-F,-~(z). (2.10) 

where we have used the result that 

The condition (2.4) then determines (Barber 1973) a non-zero critical temperature 
z,d(l) for all 1 and both 7 if d exceeds three, However, if d = 3 and 1 is finite 4 vanishes 
only at T = 0. 

The free energy fd which appears in (1.3) is related to p ( 1 ,  T) by a Legendre 
transformation. Explicitly we have 

Pf;;(T,p)=-Pp(CL, T)+PPCL = - P p - P 4 + P P d  (2.1 1) 

where PE;  =2r&/412. Thus (1.3) becomes, on using (2.4), 

(2.12) 

(2.13) 

and we explicitly indicate that 4 depends on the boundary conditions. Hence to 
evaluate Yd, we require an expansion of e(+, 1 )  to order l-’. For the most part, this 
analysis has been given elsewhere (Barber 1973). We shall refer to these results as 
required. 

3. Derivation of the helicity modulus 

We consider in turn the two temperature regimes: T above Tc,d and T below Tc,d, where 
Tc,d is the critical temperature of the bulk d-dimensional ideal gas given by (Gunton 
and Buckingham 1968) 

Ac$=Fid(O)=l($d) (3.1) 
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with ( ( z )  denoting the Riemann zeta function. Substituting (2.5) yields 

k g  Tc,d = (2~rh~ /m)Lp / l ( id ) ]~ /~ .  (3.2) 
The identification (1.2) of Yd(T) with the superfluid density leads one to expect that the 
helicity modulus should vanish for T 3 Tc,d. 

3.1. Helicity modulus above Tc,d 

If T i s  above Tc,d, 4 is positive for all 1. From equation (30) of Barber (1973) we have 

1 -*a, 4 >o. (3.3) 

(3.4) 

(3.5) 

POd(4,1)=F4d+,(4)+2~ 1-id 4 i d - 4  e ~ p ( - 2 T t J d ) / l ~ ~ + ~  

Hence 

40 = dm + 0(exp(-2~lJ4~)) ,  

Adp = FA d (&I. 
where is the solution of the bulk constraint 

Combining (3.3) and (3.4) yields 

a&”(t$, I)= -4d+l(4m)-Adp4m+O(eXp(-:! .rr lJ4m)) l + a ,  ‘$m>O. (3.6) 
In the case of anti-periodic boundary conditions, we may expand the summand in 

(2.6) as 

(3.7) 1 2  2 1 2  2 Fh(d+1)(4+sr / I  )ftl-2Fi(d-l)(4+ar / I  )+0(r4)9 
where we have used (2.10). Since, for positive 4, FU(4 + z )  is analytic in z ,  the sums 
over 91,2 can be converted to integrals with exponentially small error to yield 

l+a,d>O. (3.8) pY2w 1) = PI d+l(4) + tl-*FId(d) + o r 4 )  
The density constraint (2.9) now implies that 

4 1,2 = 4m + $-’ + 0 ( r 4 ) ,  (3.9) 
where +m is again given by (3.5). Hence 

Qfi/*(41/2, 1)=-Fid+i (4o~)-A~P4m-th~Pl-~+0(1-~) ,  1 -* a, dm > 0. (3.10) 
Substituting this result and (3.6) in (2.12) yields the expected result that 

Yd( T )  = 0 T >  Tc,d. (3.11) 

3.2. Helicity modulus beneath the critical temperature 

In the regime T less than Tc,d it is necessary to consider separately the cases d > 3 and 
d = 3. In the first, we make use of the result (Barber 1973) that for both T = 0 and 
T = f is a monotonic increashg function of 1. Thus given any T < Tc,d = liml+m Er,(/) 
we can find a value of I ,  say I ,  for which 

T< min(T$O), ~ ~ , % O ) ,  1 >i. (3.12) 
Hence for 1 > f ,  we can put 40 = +1,2 = 0 in (2.6) and (2.13). Thus (2.12) becomes 

Yd(T) = (kgTA2/2Tr)(p +4A-d 1-00 lim (l%Q(i))) ,  (3.13) 
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with 

The analysis of AQ(l) for large 1 is given in the appendix, where we show that 

l'AQ(1) = -i{(id)+O(l-'), l+oO. (3.15) 

Substituting this result in (3.13) yields 

Yd(T) = (keTA2/27r)b -A-d[($d)] 

= (keTPA2/27r)[1 - (T/Tc,~) '~] ,  d > 3  (3.16) 

where we have used (3.1) and (2.5). 
For d = 3, the above argument is inapplicable, since for finite I, the finite-thickness 

system does not have a non-zero critical temperature. Thus the field f#J remains positive 
for all 1(<00) and T>O. However, the analysis of Barber (1973) (see also Barber and 
Fisher 1973b) establishes that for fixed T.: Tc,3 and large I, f#J can be written as 

f#J = X / P .  (3.17) 

The 'scaled field' x is determined by the density constraint (2.9) which reduces to 
(Barber 1973) 

(A2-A3)p = f f ( ~ ) / l  +0(1-2), l+m,x  = O(1). (3.18) 

The functions W(x) are given by 

E&) = 2 K 1 l 2  ln[2 sinh(.rrx '/')I (3.19) 

and 

H'/'(x) = 27r-'/' ln(2 cosh[7r(x -$'/2]). (3.20) 

If we define a reduced scaled temperature variable 

6 = 2 J ; ; , I ( A ~ - A 3 ) = t ~ ~ ~ ( 3 / 2 ) [ 1  -(Tc,3/T)3'2], (3.21) 
we can invert (3.18) to give 

x = w(e)+o(r'), (3.22) 

with 

w"(0 )  = [sinh-'($ exp 0)]'/7r', (3.23) 

and 

W'/2(d)  = f+[cosh-'(f exp e)I2/~'.  (3.24) 

We observe that 6 is negative for T < Tc,3 and tends to -a as 1+o0 with Tfixed. In this 
limit, we find explicitly that 

xo=i7r-2 exp(-2101), 7 = 0, ( 3 . 2 5 ~ )  

(3.256) 
These results imply that for both boundary conditions, &( T, 1) becomes exponentially 
small as 1 tends to infinity at fixed T < Tc,3. 
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To complete the derivation of Y3( T), we require the expansions of P;(x/12, I)  to 
order l-'. These are given in equations (42) and (54) of Barber (1973), from which we 
obtain 

~ 2 ( ~ ~ ' 2 - P ~ )  = 5(3/2)($+Xo-X1/2) O(I-'). (3.26) 

Substituting this result, together with (3.27) and (3.35), in (2.12) finally yields 

4. Discussion 

In the preceding section we evaluated the helicity modulus, defined by (1.3), for ideal 
Bose gases in d dimensions. The pertinent results are contained in (3.1 l), (3.17) and 
(3.27), which may be summarised as (d 3 3): 

The critical temperature Tc,d is given by (3.2). From (1.2) and (2.5), we find that the 
superfluid density p,(T) of an ideal Bose gas is simply 

is the condensate fraction in the bulk system (see e.g. London 1954). 
Several aspects of these results are worth comment. The first concerns the critical 

behaviour of Yd(T) near Tc,d. In this regime the behaviour of the helicity modulus can 
be described (see FBJ § 2) by an exponent v defined by 

Various arguments (see FJB §§ 5 and 6) then relate U to more conventional exponents by 
the Josephson relation (Josephson 1966): 

U = 2p -qv. (4.5) 

Here @ describes the vanishing of the order parameter qo(T)  as T - ,  T,,  v the 
divergence of the correlation length as T+ TZ and 77 the decay of the correlation 
function at T,. For the ideal Bose gas (Gunton and Buckingham 1968) 
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The correlation exponents have the values (see Gunton and Buckingham 1968, Barber 
1973) 

77 = o  for all d (4.8) 
(d  - 2)-' d < 4  

1 d s 4 ,  
(4.9) 

with an additional logarithmic factor for d = 4. 
From (4.1) we find that for the ideal Bose gas 

u = l  for all d ,  (4.10) 

which satisfies the Josephson relation (4.5). On the other hand, there exist additional 
arguments (see FBJ 30 3 and 5 )  which predict that 

U = ( d  - 2 ) ~  (4.11) 

a relation first proposed for d = 3 by Ferrell et a1 (1967). This relation, however, is 
inconsistent with the exponent values (4.9) and (4.10) if d exceeds 4, and misses 
logarithmic factors for d = 4 .  This failure is, of course, nothing more than a direct 
reflection of the well known failure of hyperscaling or d -dependent scaling in more than 
four dimensions. Nevertheless, its validity in three dimensions, strengthens the argu- 
ments of FBJ, that a phase coherence length A(')(T) defined by 

A(y)(T) = [Ic~T/Y(T)]' ' (~-*'  (4.12) 

can play the role of a correlation length in the ordered phase of an isotropic system. 
Whilst this definition has been used on an essentially ad hoc basis by Ferrell eta1 (1967, 
1968) in their treatment of dynamic scaling, its further justification awaits the calcula- 
tion of Y(T) for more realistic systems. 

Finally, it is informative to contrast the low temperature behaviour of Y(T) for the 
ideal Bose gas with that expected in interacting systems. Two features of (4.1) and (4.2) 
are special to the ideal gas. Firstly, at T = 0, there is no depletion, i.e. ps(0) = p .  
Secondly the leading low temperature behaviour 

Y( T )  - Y(0) - ps( T )  - p  - T f d  (4.13) 

is the same as that of the condensate fraction. Neither of these results is expected to be 
true for a system of interacting bosons (see e.g. Khalatnikov 1965). It would therefore 
be of considerable interest to apply the definition (1 .1)  to either a weakly interacting 
Bose gas treated within the approximation of Bogoliubov (1947, reprinted in Pines 
1961) or to an isotropic magnet within spin-wave theory. Some progress along these 
lines has been made recently (Jasnow, private communication) but further work is 
required to fully test the utility of (1.1).  
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Appendix. Analysis of AQ(0 for large 1 

It is convenient to rewrite (3.14) as 

where we have defined 

Introducing the representation (Barber 1973) 
c +im 

F,(z) = (27ri)-I I z - P b ) l ( a  + p )  dp, 
c -im 

where T(p) is the gamma function and 

c = R e p  >max(O, 1 -U), (A.4) 
we obtain 

c +im 

AQ(l) = -tr-’/’l(u)/I + (27r-’/’/27ri) lZp-’T(p)l(a + p ) o ( p )  dp. (A.5) 
c -im 

The function w ( p )  is defined by 

m 

= c s - ’ p  -s-p(s + l)-p]. 
s = l  

For large s, the summand of this expression varies as s-*’-l and hence w ( p )  is an 
analytic function of p for Re p > 0. We shall however require an analytic continuation 
to Re  p 3 -4. This follows by rewriting (A.6) as 

m 
w ( p ) =  C s-’”[l-(l+l/s)-P] 

s = l  

m 

s = l  
+ c s - y  1 - p / s  + p ( p  + 1)/2s2 - (1 + l/s)-P]. 

The sum in the final expression in (A.7) is now convergent for R e p  > -1, while the 
zeta-functions indicate that o ( p )  has a simple pole at p = -f with a residue of 1/16. 

Thus, on closing the contour in (AS) in the left-half of the complex p-plane and 
evaluating the residues at successive poles yields 

AQ(l)  = - - T - I ” ~ ( c T ) ~ - ~  + 2~-’/’C(a)o(0)1-’ + 27r-”’T( -;)[(a -f)l-’/8 + O(l-3) .  

(A.8) 

(A.9) 

From (A.7), 

o (0) = lim p l ( 2 p  + 1) = t 
P - 0  
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and hence 

I’AQ(l)= -[(g -;)/4 + O(l-’), 

from which (3.15) follows immediately. 
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